Hyperplanes of Hermitian dual polar spaces of rank 3 containing a quad

نویسنده

  • Bart De Bruyn
چکیده

Let F and F′ be two fields such that F′ is a quadratic Galois extension of F. If |F| ≥ 3, then we provide sufficient conditions for a hyperplane of the Hermitian dual polar space DH(5,F′) to arise from the Grassmann embedding. We use this to give an alternative proof for the fact that all hyperplanes of DH(5, q2), q 6= 2, arise from the Grassmann embedding, and to show that every hyperplane of DH(5,F′) that contains a quad Q is either classical or the extension of a non-classical ovoid of Q. We will also give a classification of the hyperplanes of DH(5,F′) that contain a quad and arise from the Grassmann embedding.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Locally subquadrangular hyperplanes in symplectic and Hermitian dual polar spaces

In [11] all locally subquadrangular hyperplanes of finite symplectic and Hermitian dual polar spaces were determined with the aid of counting arguments and divisibility properties of integers. In the present note we extend this classification to the infinite case. We prove that symplectic dual polar spaces and certain Hermitian dual polar spaces cannot have locally subquadrangular hyperplanes i...

متن کامل

On a Class of Hyperplanes of the Symplectic and Hermitian Dual Polar Spaces

Let ∆ be a symplectic dual polar space DW (2n−1, K) or a Hermitian dual polar space DH(2n − 1, K, θ), n ≥ 2. We define a class of hyperplanes of ∆ arising from its Grassmann-embedding and discuss several properties of these hyperplanes. The construction of these hyperplanes allows us to prove that there exists an ovoid of the Hermitian dual polar space DH(2n−1, K, θ) arising from its Grassmann-...

متن کامل

Hyperplanes of dual polar spaces of rank 3 with no subquadrangular quad

Let D be a thick dual polar space of rank 3, and let H be a hyperplane of D. Calling the elements of D points, lines and quads, we call a quad aNH singular if H V a 1⁄4 P? V a for some point P, subquadrangular if H V a is a subquadrangle, and ovoidal if H V a is an ovoid. A point P A H of a quad a is said to be deep with respect to a if P? V aHH, and it is called deep if P? HH. We investigate h...

متن کامل

On the simple connectedness of hyperplane complements in dual polar spaces

Let ∆ be a dual polar space of rank n ≥ 4, H be a hyperplane of ∆ and Γ := ∆\H be the complement of H in ∆. We shall prove that, if all lines of ∆ have more than 3 points, then Γ is simply connected. Then we show how this theorem can be exploited to prove that certain families of hyperplanes of dual polar spaces, or all hyperplanes of certain dual polar spaces, arise from embeddings.

متن کامل

Uniform Hyperplanes of Finite Dual Polar Spaces of Rank 3

Let 2 be a finite thick dual polar space of rank 3. We say that a hyperplane H of 2 is locally singular (respectively, quadrangular or ovoidal) if H & Q is the perp of a point (resp. a subquadrangle or an ovoid) of Q for every quad Q of 2. If H is locally singular, quadrangular, or ovoidal, then we say that H is uniform. It is known that if H is locally singular, then either H is the set of poi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Des. Codes Cryptography

دوره 79  شماره 

صفحات  -

تاریخ انتشار 2016